Received 16 July 2003 Accepted 18 July 2003

Online 24 July 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jin-Sen Zhou,^a Ji-Wen Cai^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.044 wR factor = 0.116 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquacadmium(II) di-(S)-camphor-10-sulfonate

The Cd atom in the title compound, $[Cd(H_2O)_6](C_{10}H_{15}O_4S)_2$, shows octahedral coordination. The cation is linked to the two anions by extensive hydrogen bonds.

Comment

Cadmium di-D-camphor-10-sulfonate was synthesized for its possible use as a gas absorbent, since a related dihydrate, cadmium 1,5-naphthalenedicarboxylate, exhibits selectivity for absorbing ammonia (Cai *et al.*, 2002). The D-camphor-10-sulfonate crystallizes as a hexaaqua complex, (I), which is isomorphous with the Ni^{II} analog, the structure of which has been described in detail (Henderson & Nicholson, 1995).

Experimental

Cadmium acetate (0.70 g, 1.5 mmol) and D-camphorsulfonic acid (0.40 g, 3 mmol) were dissolved in ethanol and the solution heated for several hours. Slow evaporation of the solvent afforded colorless crystals of the hexahydrate.

Crystal data [Cd(H₂O)₆](C₁₀H₁₅O₄S)₂ $D_r = 1.540 \text{ Mg m}^{-3}$ $M_{\rm w} = 683.06$ Mo $K\alpha$ radiation Monoclinic, P2 Cell parameters from 963 a = 11.775 (2) Å reflections b = 7.1711 (9) Å $\theta = 2.8 - 27.1^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ c = 17.488 (2) Å $\beta = 93.914 \ (2)^{\circ}$ T = 298 (2) KV = 1473.3 (3) Å³ Parallelepiped, colorless Z = 2 $0.50 \times 0.29 \times 0.21 \text{ mm}$ Data collection Bruker SMART area-detector 5451 independent reflections diffractometer 4624 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.021$ $\theta_{\rm max} = 27.1^{\circ}$ Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $h = -12 \rightarrow 15$ $T_{\min} = 0.650, T_{\max} = 0.826$ $k = -9 \rightarrow 8$ $l = -22 \rightarrow 22$ 8977 measured reflections Refinement Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0631P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.044$ + 0.1284P] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.116$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.24 $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$ 5451 reflections $\Delta \rho_{\rm min} = -2.12 \text{ e } \text{\AA}^{-3}$ 370 parameters H atoms treated by a mixture of Absolute structure: Flack (1983), 1973 Friedel pairs independent and constrained

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

refinement

Flack parameter = 0.00(3)

Table 1	1
---------	---

Selected	geometric	parameters	(A, '	°).	
----------	-----------	------------	-------	-----	--

Cd1-O1w	2.244 (3)	Cd1 - O4w	2.278 (5)
Cd1 - O2w	2.221 (3)	Cd1 - O5w	2.268 (6)
Cd1 - O3w	2.270 (5)	Cd1 - O6w	2.259 (6)
O1w-Cd1-O2w	176.8 (2)	O2w-Cd1-O6w	88.3 (2)
O1w-Cd1-O3w	88.6 (3)	O3w-Cd1-O4w	82.7 (3)
O1w-Cd1-O4w	91.6 (2)	O3w-Cd1-O5w	178.1 (3)
O1w-Cd1-O5w	92.5 (2)	O3w-Cd1-O6w	96.0 (1)
O1w-Cd1-O6w	88.8 (2)	O4w-Cd1-O5w	95.7 (1)
O2w-Cd1-O3w	90.3 (3)	O4w-Cd1-O6w	178.6 (2)
O2w-Cd1-O4w	91.2 (2)	O5w-Cd1-O6w	85.6 (3)
O2w-Cd1-O5w	88.7 (3)		~ /

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1w - H1w1 \cdots O1$	0.85(1)	1.89 (4)	2.70(1)	158 (9)
$O1w - H1w2 \cdot \cdot \cdot O3^{i}$	0.85 (1)	2.07 (6)	2.753 (9)	136 (8)
$O2w - H2w1 \cdots O6^{ii}$	0.85 (1)	1.92 (5)	2.69 (1)	149 (9)
$O2w - H2w2 \cdots O5$	0.85 (1)	1.91 (4)	2.71 (1)	155 (9)
$O3w - H3w1 \cdot \cdot \cdot O2^{i}$	0.85 (1)	2.07 (4)	2.802 (8)	145 (7)
$O3w - H3w2 \cdot \cdot \cdot O6^{iii}$	0.85 (1)	1.97 (3)	2.762 (7)	155 (7)
$O4w - H4w2 \cdots O1^{iv}$	0.85(1)	2.07 (4)	2.805 (7)	144 (6)
$O4w - H4w1 \cdots O7$	0.86 (1)	1.98 (2)	2.832 (8)	172 (6)
$O5w - H5w2 \cdot \cdot \cdot O3^{iv}$	0.85 (1)	2.03 (2)	2.858 (7)	163 (6)
$O5w-H5w1\cdots O7^{ii}$	0.86 (1)	2.04 (3)	2.849 (8)	157 (6)
$O6w - H6w1 \cdots O2$	0.85(1)	1.98 (2)	2.801 (8)	163 (6)
$O6w - H6w2 \cdots O5^{iii}$	0.85 (1)	1.96 (1)	2.802 (7)	177 (6)
		1 (***)	1 (1)1	1.

Symmetry codes: (i) x, 1 + y, z; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z$; (iv) $1 - x, \frac{1}{2} + y, -z$.

The H atoms of the water molecules were located and refined, subject to O-H = 0.85 (1) Å and $H \cdots H = 1.39$ (1) Å. The carbonbound H atoms were placed geometrically, and were allowed to ride on their parent atoms in the riding-model approximation. The

Figure 1

ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

displacement parameters of all H atoms were set at 1.2 times U_{eq} of the O and C atoms. The final difference Fourier map had a hole deeper than 2 e Å⁻³ at about 0.1 Å from Cd1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Science Foundation of China (Grant No. 20271053), Sun Yat-Sen University and the University of Malaya for for supporting this work.

References

Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cai, J.-W., Zhou, J.-S. & Lin, M.-L. (2002). J. Mater. Chem. 13, 1806–1811. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Henderson, W. & Nicholson, B. K. (1995). Acta Cryst. C51, 37-40.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.