Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Sen Zhou, ${ }^{\text {a }}$ Ji-Wen Cai ${ }^{\text {a }}$ and

 Seik Weng $\mathbf{N g}^{{ }^{\mathrm{b}} \text { * }}$${ }^{\text {a Department of Chemistry, Sun Yat-Sen }}$ University, Guangzhou 510275, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of
Chemistry, University of Malaya, 50603
Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.044$
$w R$ factor $=0.116$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquacadmium(II) di-(S)-camphor-10-sulfonate

The Cd atom in the title compound, $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}\right)_{2}$, shows octahedral coordination. The cation is linked to the two anions by extensive hydrogen bonds.

Received 16 July 2003 Accepted 18 July 2003 Online 24 July 2003

Comment

Cadmium di-D-camphor-10-sulfonate was synthesized for its possible use as a gas absorbent, since a related dihydrate, cadmium 1,5-naphthalenedicarboxylate, exhibits selectivity for absorbing ammonia (Cai et al., 2002). The D-camphor-10sulfonate crystallizes as a hexaaqua complex, (I), which is isomorphous with the $\mathrm{Ni}^{\text {II }}$ analog, the structure of which has been described in detail (Henderson \& Nicholson, 1995).

(I)

Experimental

Cadmium acetate ($0.70 \mathrm{~g}, 1.5 \mathrm{mmol}$) and D-camphorsulfonic acid $(0.40 \mathrm{~g}, 3 \mathrm{mmol})$ were dissolved in ethanol and the solution heated for several hours. Slow evaporation of the solvent afforded colorless crystals of the hexahydrate.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}\right)_{2}$	$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=683.06$	Mo α radiation
Monclinic, $P 2_{\perp}$	Cell parameters from 963
$a=11.775(2) \AA$	reflections
$b=7.1711(9) \AA$	$\theta=2.8-27.1^{\circ}$
$c=17.488(2) \AA$	$\mu=0.94 \mathrm{~mm}^{-1}$
$\beta=93.914(2)^{\circ}$	$T=298(2) \mathrm{K}$
$V=1473.3(3) \AA^{\circ}$	Parallelepiped, colorless
$Z=2$	$0.50 \times 0.29 \times 0.21 \mathrm{~mm}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS: Sheldrick, 1996)
$T_{\text {min }}=0.650, T_{\text {max }}=0.826$
8977 measured reflections

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0631 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$	$+0.1284 P]$
$w R\left(F^{2}\right)=0.116$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.24$	$(\Delta / \sigma)_{\max }=0.001$
5451 reflections	$\Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3}$
370 parameters	$\Delta \rho_{\min }=-2.12 \mathrm{e} \AA^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983),
\quad independent and constrained	1973 Friedel pairs
\quad refinement	Flack parameter $=0.00(3)$

5451 independent reflections
4624 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-12 \rightarrow 15$
$k=-9 \rightarrow 8$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0631 P)^{2}\right. \\
& +0.1284 P] \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.56 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { Flack parameter }=0.00(3)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1 w$	$2.244(3)$	$\mathrm{Cd} 1-\mathrm{O} 4 w$	$2.278(5)$
$\mathrm{Cd} 1-\mathrm{O} 2 w$	$2.221(3)$	$\mathrm{Cd} 1-\mathrm{O} 5 w$	$2.268(6)$
$\mathrm{Cd} 1-\mathrm{O} 3 w$	$2.270(5)$	$\mathrm{Cd} 1-\mathrm{O} 6 w$	$2.259(6)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 2 w$	$176.8(2)$	$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{O} 6 w$	$88.3(2)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 3 w$	$88.6(3)$	$\mathrm{O} 3 w-\mathrm{Cd} 1-\mathrm{O} 4 w$	$82.7(3)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 4 w$	$91.6(2)$	$\mathrm{O} 3 w-\mathrm{Cd} 1-\mathrm{O} 5 w$	$178.1(3)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 5 w$	$92.5(2)$	$\mathrm{O} 3 w-\mathrm{Cd} 1-\mathrm{O} 6 w$	$96.0(1)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 6 w$	$88.8(2)$	$\mathrm{O} 4 w-\mathrm{Cd} 1-\mathrm{O} 5 w$	$95.7(1)$
$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{O} 3 w$	$90.3(3)$	$\mathrm{O} 4 w-\mathrm{Cd} 1-\mathrm{O} 6 w$	$178.6(2)$
$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{O} 4 w$	$91.2(2)$	$\mathrm{O} 5 w-\mathrm{Cd} 1-\mathrm{O} 6 w$	$85.6(3)$
$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{O} 5 w$	$88.7(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1$	0.85 (1)	1.89 (4)	2.70 (1)	158 (9)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 3^{\text {i }}$	0.85 (1)	2.07 (6)	2.753 (9)	136 (8)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 6^{\text {ii }}$	0.85 (1)	1.92 (5)	2.69 (1)	149 (9)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O}$	0.85 (1)	1.91 (4)	2.71 (1)	155 (9)
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2^{\text {i }}$	0.85 (1)	2.07 (4)	2.802 (8)	145 (7)
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 6^{\text {iii }}$	0.85 (1)	1.97 (3)	2.762 (7)	155 (7)
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 1^{\text {iv }}$	0.85 (1)	2.07 (4)	2.805 (7)	144 (6)
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 7$	0.86 (1)	1.98 (2)	2.832 (8)	172 (6)
$\mathrm{O} 5 w-\mathrm{H} 5 w 2 \cdots 3^{\text {iv }}$	0.85 (1)	2.03 (2)	2.858 (7)	163 (6)
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.86 (1)	2.04 (3)	2.849 (8)	157 (6)
$\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots \mathrm{O} 2$	0.85 (1)	1.98 (2)	2.801 (8)	163 (6)
$\mathrm{O} 6 w-\mathrm{H} 6 \mathrm{w} 2 \cdots \mathrm{O} 5^{\text {iii }}$	0.85 (1)	1.96 (1)	2.802 (7)	177 (6)

The H atoms of the water molecules were located and refined, subject to $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA. The carbonbound H atoms were placed geometrically, and were allowed to ride on their parent atoms in the riding-model approximation. The

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
displacement parameters of all H atoms were set at 1.2 times $U_{\text {eq }}$ of the O and C atoms. The final difference Fourier map had a hole deeper than $2 \mathrm{e} \AA^{-3}$ at about $0.1 \AA$ from Cd 1 .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (Grant No. 20271053), Sun Yat-Sen University and the University of Malaya for for supporting this work.

References

Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, J.-W., Zhou, J.-S. \& Lin, M.-L. (2002). J. Mater. Chem. 13, 1806-1811.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Henderson, W. \& Nicholson, B. K. (1995). Acta Cryst. C51, 37-40.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.

